logic/Main.hs
2025-07-31 12:22:18 +00:00

274 lines
8.2 KiB
Haskell

import Control.Applicative (Applicative, Alternative(..))
import Data.Char (isAlphaNum)
import Data.Functor (Functor)
import Data.List (intercalate)
import Data.Maybe (fromJust)
import qualified Data.Set as S
newtype Parser symbol output = Parser
{ runParser :: [symbol] -> Maybe (output, [symbol])
}
instance Functor (Parser s) where
fmap :: (a -> b) -> Parser s a -> Parser s b
fmap f (Parser p) = Parser
{ runParser = \xs -> do
(result, xs') <- p xs
return (f result, xs')
}
instance Applicative (Parser s) where
pure :: a -> Parser s a
pure result = Parser $ \xs -> Just (result, xs)
(Parser p1) <*> (Parser p2) =
Parser $ \xs -> do
(f, xs') <- p1 xs
(result, xs'') <- p2 xs'
return (f result, xs'')
instance Alternative (Parser s) where
empty :: Parser s a
empty = Parser $ const Nothing
(Parser p1) <|> (Parser p2) =
Parser $ \xs -> p1 xs <|> p2 xs
data Statement
= Atom String
| Not Statement
| And Statement Statement
| Or Statement Statement
| Implies Statement Statement
| Iff Statement Statement
deriving (Show, Eq)
parseToken :: String -> Parser Char String
parseToken token = Parser parse
where
n = length token
parse xs
| token == take n xs = Just (token, drop n xs)
| otherwise = Nothing
parseWhile :: (Char -> Bool) -> Parser Char String
parseWhile check = Parser parse
where
parse [] = Nothing
parse (token:rest)
| check token =
case parse rest of
Nothing -> Just ([token], rest)
Just (tokens, rest') -> Just (token:tokens, rest')
| otherwise = Nothing
parseBrackets :: Parser Char a -> Parser Char a
parseBrackets p = parseToken "(" *> p <* parseToken ")"
parseInfix :: String -> Parser Char a -> Parser Char a -> Parser Char (a, a)
parseInfix token p1 p2 = (,) <$> (p1 <* parseToken token) <*> p2
parseConnective :: String -> Parser Char a -> Parser Char a -> Parser Char (a, a)
parseConnective token p1 p2 = parseBrackets $ parseInfix token p1 p2
stmtAtom :: Parser Char Statement
stmtAtom = Atom <$> parse
where
parse = parseWhile $ \char -> isAlphaNum char || char == '_'
stmtNot :: Parser Char Statement
stmtNot = Not <$> (parseToken "!" *> stmt)
stmtAnd :: Parser Char Statement
stmtAnd = uncurry And <$> parseConnective "&" stmt stmt
stmtOr :: Parser Char Statement
stmtOr = uncurry Or <$> parseConnective "|" stmt stmt
stmtImplies :: Parser Char Statement
stmtImplies = uncurry Implies <$> parseConnective "->" stmt stmt
stmtIff :: Parser Char Statement
stmtIff = uncurry Iff <$> parseConnective "<->" stmt stmt
stmt :: Parser Char Statement
stmt = stmtAtom <|> stmtNot <|> stmtAnd <|> stmtOr <|> stmtImplies <|> stmtIff
{-
ghci> runParser stmt "(!a<->((!(p->q)&x)|y))"
Just (Iff (Not (Atom "a")) (Or (And (Not (Implies (Atom "p") (Atom "q"))) (Atom "x")) (Atom "y")),"")
-}
p :: Statement
p = fromJust $ fst <$> runParser stmt "((a->b)<->!c)"
q :: Statement
q = fromJust $ fst <$> runParser stmt "(!a<->((!(p->q)&x)|y))"
atoms :: Statement -> S.Set String
atoms (Atom key) = S.singleton key
atoms (Not s) = atoms s
atoms (And s1 s2) = S.union (atoms s1) (atoms s2)
atoms (Or s1 s2) = S.union (atoms s1) (atoms s2)
atoms (Implies s1 s2) = S.union (atoms s1) (atoms s2)
atoms (Iff s1 s2) = S.union (atoms s1) (atoms s2)
eval :: [(String, Bool)] -> Statement -> Maybe Bool
eval assignments = aux
where
aux (Atom key) = lookup key assignments
aux (Not s) = not <$> aux s
aux (And s1 s2) = (&&) <$> aux s1 <*> aux s2
aux (Or s1 s2) = (||) <$> aux s1 <*> aux s2
aux (Implies s1 s2) = not <$> ((&&) <$> aux s1 <*> (not <$> aux s2))
aux (Iff s1 s2) = (==) <$> aux s1 <*> aux s2
data Bucket
= Tautology
| Contradiction
| Contingent
deriving (Eq, Show)
bucket :: Statement -> Bucket
bucket s
| and values = Tautology
| all not values = Contradiction
| otherwise = Contingent
where
atomsList = S.toList $ atoms s
values = [fromJust $ eval assignments s | assignments <- enumerate $ atomsList]
enumerate :: [a] -> [[(a, Bool)]]
enumerate keys = aux start
where
aux assignments = (assignments:) $
case next assignments of
Nothing -> []
Just (assignments') -> aux assignments'
start = [(key, False) | key <- keys]
next [] = Nothing
next ((k, False):rest) = Just $ (k, True):rest
next ((k, True):rest) = ((k, False):) <$> (next rest)
{-
ghci> bucket $ fromJust $ fst <$> runParser stmt "(p<->p)"
Tautology
ghci> bucket p
Contingent
ghci> bucket q
Contingent
ghci> bucket $ fromJust $ fst <$> runParser stmt "(p<->!p)"
Contradiction
ghci> bucket $ fromJust $ fst <$> runParser stmt "(p|!p)"
Tautology
ghci> bucket $ fromJust $ fst <$> runParser stmt "(p->p)"
Tautology
ghci> bucket $ fromJust $ fst <$> runParser stmt "(p&!p)"
Contradiction
ghci> bucket $ fromJust $ fst <$> runParser stmt "(!(p->q)&!p)"
Contradiction
ghci> bucket $ fromJust $ fst <$> runParser stmt "(p|(p->q))"
Tautology
ghci> bucket $ fromJust $ fst <$> runParser stmt "((p->q)->(!p->r))"
Contingent
ghci> bucket $ fromJust $ fst <$> runParser stmt "(!(a&b)<->(!a|!b))"
Tautology
ghci> bucket $ fromJust $ fst <$> runParser stmt "(!(a|b)<->(!a&!b))"
Tautology
-}
data SerializeFormat
= Ascii
| Latex
deriving (Show, Eq)
serializeParts :: SerializeFormat -> Statement -> [String]
serializeParts = aux
where
aux Ascii = ascii
aux Latex = latex
ascii (Atom key) = [key]
ascii (Not s) = ["!"] ++ ascii s
ascii (And s1 s2) = connective "&" (ascii s1) (ascii s2)
ascii (Or s1 s2) = connective "|" (ascii s1) (ascii s2)
ascii (Implies s1 s2) = connective "->" (ascii s1) (ascii s2)
ascii (Iff s1 s2) = connective "<->" (ascii s1) (ascii s2)
latex (Atom key) = [key]
latex (Not s) = ["\\neg "] ++ latex s
latex (And s1 s2) = connective "\\cap " (latex s1) (latex s2)
latex (Or s1 s2) = connective "\\cup " (latex s1) (latex s2)
latex (Implies s1 s2) = connective "\\to " (latex s1) (latex s2)
latex (Iff s1 s2) = connective "\\leftrightarrow " (latex s1) (latex s2)
connective token s1 s2 = ["("] ++ s1 ++ [token] ++ s2 ++ [")"]
serialize :: SerializeFormat -> Statement -> String
serialize fmt s = concat $ serializeParts fmt s
serializeLatexTruthTableRow :: [(String, Bool)] -> Statement -> Maybe String
serializeLatexTruthTableRow = latexRow
where
latexRow ass (Atom key) = toInt <$> eval ass (Atom key)
latexRow ass (Not s) = (toInt <$> not <$> eval ass s) <> latexRow ass s
latexRow ass (And s1 s2) = latexRowBinaryConnective (&&) ass s1 s2
latexRow ass (Or s1 s2) = latexRowBinaryConnective (||) ass s1 s2
latexRow ass (Implies s1 s2) = latexRowBinaryConnective implies ass s1 s2
latexRow ass (Iff s1 s2) = latexRowBinaryConnective (==) ass s1 s2
latexRowBinaryConnective op ass s1 s2 =
(\subrow1 subrow2 subeval1 subeval2 -> " " <> subrow1 <> (toInt $ op subeval1 subeval2) <> subrow2 <> " ") <$>
latexRow ass s1 <*> latexRow ass s2 <*>
eval ass s1 <*> eval ass s2
toInt :: Bool -> String
toInt False = "0"
toInt True = "1"
implies :: Bool -> Bool -> Bool
implies b1 b2 = not b1 || b2
truthtable :: Statement -> String
truthtable s = open <> header <> "\\hline\n" <> body <> close
where
open =
"\\begin{tabular}{" <>
replicate (length atomsList) 'c' <>
"|" <>
replicate (length serial) 'c' <>
"}\n"
close = "\\end{tabular}\n\n"
serial = serialize Latex s
atomsList :: [String]
atomsList = S.toAscList $ atoms s
header :: String
header =
intercalate " & " (map dollars atomsList) <>
" & " <>
intercalate " & " (map dollars $ serializeParts Latex s) <>
" \\\\\n"
dollars :: String -> String
dollars string = "$" <> string <> "$"
body :: String
body = concat $ map line $ enumerate atomsList
line assignments =
intercalate " & " (bools assignments) <>
" & " <>
intercalate " & " (parts assignments) <>
" \\\\\n"
bools assignments = [if bool then "1" else "0" | (key, bool) <- assignments]
parts assignments =
(\xs -> [" " <> [x] <> " " | x <- xs]) $
fromJust $ serializeLatexTruthTableRow assignments s