formal language derivations
This commit is contained in:
parent
e2aae59499
commit
4084aee3ca
4 changed files with 140 additions and 17 deletions
143
Logic/Language/Impl/L.hs
Normal file
143
Logic/Language/Impl/L.hs
Normal file
|
@ -0,0 +1,143 @@
|
|||
module Logic.Language.L where
|
||||
|
||||
import Logic.Language (Language(..), Seq(..))
|
||||
import Logic.Statement (Statement(..))
|
||||
import Logic.Parse
|
||||
( Parser(..)
|
||||
, ParseError
|
||||
, Input(..)
|
||||
, eof
|
||||
, expected
|
||||
, mkInput
|
||||
, parseToken
|
||||
)
|
||||
|
||||
import Control.Applicative (Alternative((<|>)))
|
||||
import Data.Either (isRight)
|
||||
import Data.Maybe (fromJust, maybeToList)
|
||||
import Text.Read (readMaybe)
|
||||
|
||||
-- The language L
|
||||
data AlphaL
|
||||
= Arrow
|
||||
| Tilde
|
||||
| Open
|
||||
| Close
|
||||
| Variable Integer
|
||||
deriving (Eq, Show)
|
||||
|
||||
type StringL = [AlphaL]
|
||||
|
||||
instance Language AlphaL where
|
||||
isWellFormed string = isRight $ eof parseL $ mkInput string
|
||||
|
||||
axiom2 = [lAxiom1, lAxiom3]
|
||||
axiom3 = [lAxiom2]
|
||||
infer2 = [lRule1]
|
||||
|
||||
-- (A → (B → A))
|
||||
lAxiom1 :: StringL -> StringL -> StringL
|
||||
lAxiom1 wff1 wff2 =
|
||||
[Open] ++
|
||||
wff1 ++
|
||||
[Arrow] ++
|
||||
[Open] ++ wff2 ++ [Arrow] ++ wff1 ++ [Close] ++
|
||||
[Close]
|
||||
|
||||
-- ((A → (B → C)) → ((A → B) → (A → C)))
|
||||
lAxiom2 :: StringL -> StringL -> StringL -> StringL
|
||||
lAxiom2 wff1 wff2 wff3 =
|
||||
[Open] ++
|
||||
[Open] ++
|
||||
wff1 ++
|
||||
[Arrow] ++
|
||||
[Open] ++ wff2 ++ [Arrow] ++ wff3 ++ [Close] ++
|
||||
[Close] ++
|
||||
[Arrow] ++
|
||||
[Open] ++
|
||||
[Open] ++ wff1 ++ [Arrow] ++ wff2 ++ [Close] ++
|
||||
[Arrow] ++
|
||||
[Open] ++ wff1 ++ [Arrow] ++ wff3 ++ [Close] ++
|
||||
[Close] ++
|
||||
[Close]
|
||||
|
||||
-- ((¬A → ¬B) → ((¬A → B) → A))
|
||||
lAxiom3 :: StringL -> StringL -> StringL
|
||||
lAxiom3 wff1 wff2 =
|
||||
[Open] ++
|
||||
[Open, Tilde] ++ wff1 ++ [Arrow, Tilde] ++ wff2 ++ [Close] ++
|
||||
[Arrow] ++
|
||||
[Open] ++
|
||||
[Open, Tilde] ++ wff1 ++ [Arrow] ++ wff2 ++ [Close] ++
|
||||
[Arrow] ++
|
||||
wff1 ++
|
||||
[Close] ++
|
||||
[Close]
|
||||
|
||||
{-
|
||||
ghci> import Logic.Statement.Eval (bucket)
|
||||
ghci> import Data.Either (fromRight)
|
||||
ghci> bucket $ fromRight undefined $ eof parseL $ mkInput $ lAxiom1 [Variable 0] [Variable 1]
|
||||
Tautology
|
||||
ghci> bucket $ fromRight undefined $ eof parseL $ mkInput $ lAxiom2 [Variable 0] [Variable 1] [Variable 2]
|
||||
Tautology
|
||||
ghci> bucket $ fromRight undefined $ eof parseL $ mkInput $ lAxiom3 [Variable 0] [Variable 1]
|
||||
Tautology
|
||||
-}
|
||||
|
||||
-- Modus ponens: from (A → B) and A, conclude B.
|
||||
lRule1 :: StringL -> StringL -> [StringL]
|
||||
lRule1 theorem1 theorem2 = maybeToList $ do
|
||||
s1 <- fromEither $ eof parseL $ mkInput theorem1
|
||||
s2 <- fromEither $ eof parseL $ mkInput theorem2
|
||||
case s1 of
|
||||
Implies s1a s1b
|
||||
| s2 == s1a -> Just $ fromJust $ serializeL s1b
|
||||
| otherwise -> Nothing
|
||||
_ -> Nothing
|
||||
where
|
||||
fromEither = either (const Nothing) Just
|
||||
|
||||
{-
|
||||
ghci> f x = fromJust $ serializeL $ fromRight undefined $ eof stmt $ mkInput x
|
||||
ghci> lRule1 (f "(0->1)") (f "0")
|
||||
[[Variable 1]]
|
||||
ghci> lRule1 (f "((!0->2)->(!!!!!!!1->1))") (f "(!0->2)")
|
||||
[[Open,Tilde,Tilde,Tilde,Tilde,Tilde,Tilde,Tilde,Variable 1,Arrow,Variable 1,Close]]
|
||||
ghci> lRule1 (f "((!0->2)->(!!!!!!!1->1))") (f "(!0->3)")
|
||||
[]
|
||||
-}
|
||||
|
||||
parseL :: Parser AlphaL Statement
|
||||
parseL = Parser variable <|> Parser tilde <|> arrow <|> fail
|
||||
where
|
||||
variable :: Input AlphaL -> Either ParseError (Statement, Input AlphaL)
|
||||
variable input@(Input pos ((Variable n):xs)) =
|
||||
Right (Atom $ show n, Input (pos + 1) xs)
|
||||
variable input = Left $ expected "statement variable" input
|
||||
|
||||
tilde :: Input AlphaL -> Either ParseError (Statement, Input AlphaL)
|
||||
tilde input@(Input pos (Tilde:xs)) =
|
||||
(\(statement, rest) -> (Not statement, rest)) <$>
|
||||
runParser parseL (Input (pos + 1) xs)
|
||||
tilde input = Left $ expected "negation" input
|
||||
|
||||
arrow :: Parser AlphaL Statement
|
||||
arrow = do
|
||||
parseToken [Open]
|
||||
s1 <- parseL
|
||||
parseToken [Arrow]
|
||||
s2 <- parseL
|
||||
parseToken [Close]
|
||||
return $ Implies s1 s2
|
||||
|
||||
fail :: Parser AlphaL Statement
|
||||
fail = Parser $ \input -> Left $ expected "well-formed formula" input
|
||||
|
||||
serializeL :: Statement -> Maybe [AlphaL]
|
||||
serializeL (Atom label) = (\x -> [x]) <$> Variable <$> readMaybe label
|
||||
serializeL (Not s) = (Tilde:) <$> serializeL s
|
||||
serializeL (Implies s1 s2) = do
|
||||
l1 <- serializeL s1
|
||||
l2 <- serializeL s2
|
||||
return $ [Open] ++ l1 ++ [Arrow] ++ l2 ++ [Close]
|
85
Logic/Language/Impl/M.hs
Normal file
85
Logic/Language/Impl/M.hs
Normal file
|
@ -0,0 +1,85 @@
|
|||
module Logic.Language.M where
|
||||
|
||||
import Logic.Language (Language(..), ConcatShowList(..))
|
||||
import Logic.Language.Derivation (Derivation(..))
|
||||
|
||||
-- The language M
|
||||
-- (from "Gödel, Escher, Bach: An Eternal Golden Braid" by Douglas Hofstadter)
|
||||
data AlphaM
|
||||
= M
|
||||
| I
|
||||
| U
|
||||
deriving (Eq, Show)
|
||||
|
||||
type StringM = [AlphaM]
|
||||
|
||||
instance Language AlphaM where
|
||||
isWellFormed (M:_) = True
|
||||
isWellFormed _ = False
|
||||
|
||||
axiom0 = [[M, I]]
|
||||
infer1 =
|
||||
[ mRule1
|
||||
, mRule2
|
||||
, mRule3
|
||||
, mRule4
|
||||
]
|
||||
|
||||
-- RULE I: If you possess a string whose last letter is I, you can add on a U at the end.
|
||||
mRule1 :: StringM -> [StringM]
|
||||
mRule1 [I] = [[I, U]]
|
||||
mRule1 (x:xs) = (x:) <$> mRule1 xs
|
||||
mRule1 _ = []
|
||||
|
||||
-- RULE II: Suppose you have Mx. Then you may add Mxx to your collection.
|
||||
mRule2 :: StringM -> [StringM]
|
||||
mRule2 string@(M:xs) = [string ++ xs]
|
||||
mRule2 _ = []
|
||||
|
||||
-- RULE III: If III occurs in one of the strings in your collection, you may
|
||||
-- make a new string with U in place of III.
|
||||
mRule3 :: StringM -> [StringM]
|
||||
mRule3 string@(M:xs) = (M:) <$> aux xs
|
||||
where
|
||||
aux (x@I:xs@(I:I:xs')) = (U:xs'):((x:) <$> aux xs)
|
||||
aux (x:xs) = (x:) <$> aux xs
|
||||
aux _ = []
|
||||
mRule3 _ = []
|
||||
|
||||
-- RULE IV: If UU occurs inside one of your strings, you can drop it.
|
||||
mRule4 :: StringM -> [StringM]
|
||||
mRule4 string@(M:xs) = (M:) <$> aux xs
|
||||
where
|
||||
aux (x@U:xs@(U:xs')) = xs':((x:) <$> aux xs)
|
||||
aux (x:xs) = (x:) <$> aux xs
|
||||
aux _ = []
|
||||
mRule4 _ = []
|
||||
|
||||
{-
|
||||
ghci> map ConcatShowList infer0 :: [ConcatShowList AlphaM]
|
||||
[MI]
|
||||
ghci> map ConcatShowList $ concat $ map ($ [M, I, I, I, I, U, U, I]) infer1
|
||||
[MIIIIUUIU,MIIIIUUIIIIIUUI,MUIUUI,MIUUUI,MIIIII]
|
||||
-}
|
||||
|
||||
deriveMIIUII :: Derivation AlphaM
|
||||
deriveMIIUII =
|
||||
Infer1 3 0 $
|
||||
Infer1 2 2 $
|
||||
Infer1 0 0 $
|
||||
Infer1 3 0 $
|
||||
Infer1 3 0 $
|
||||
Infer1 2 2 $
|
||||
Infer1 1 0 $
|
||||
Infer1 2 5 $
|
||||
Infer1 0 0 $
|
||||
Infer1 1 0 $
|
||||
Infer1 1 0 $
|
||||
Infer1 1 0 $
|
||||
Axiom0 0
|
||||
|
||||
{-
|
||||
ghci> import Logic.Language.Derivation (resolveDerivation)
|
||||
ghci> resolveDerivation deriveMIIUII
|
||||
Right [M,I,I,U,I,I]
|
||||
-}
|
Loading…
Add table
Add a link
Reference in a new issue